7.1 连续处理模式(Continuous processing)
连续处理是2.3 引入, 它可以实现低至 1ms 的处理延迟. 并实现了至少一次(at-least-once)的语义.
微批处理模式虽然实现了严格一次(exactly-once)的语义, 但是最低有 100ms 的延迟.
对有些类型的查询, 可以切换到这个模式, 而不需要修改应用的逻辑.(不用更改 df/ds 操作)
若要切换到连续处理模式, 只需要更改触发器即可.
spark
.readStream
.format("rate")
.option("rowsPerSecond", "10")
.option("")
spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1")
.load()
.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("topic", "topic1")
.trigger(Trigger.Continuous("1 second")) // only change in query
.start()
连续处理模式支持的查询
操作: 支持 select, map, flatMap, mapPartitions, etc. 和 selections (where, filter, etc.). 不支持聚合操作
数据源:
- kafka 所有选项都支持
- rate source
sink
- 所有的 kafka 参数都支持
- memory sink
- console sink