1.3 Hive 架构原理

主要分 4 部分:

  1. 用户接口:Client

    CLI(hive shell)、JDBC/ODBC(java访问hive)、WEBUI(浏览器访问hive)

  2. 元数据:Metastore.

    元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;

    默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore

  3. 驱动器:Driver

    (1)解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。 (2)编译器(Physical Plan):将AST编译生成逻辑执行计划。 (3)优化器(Query Optimizer):对逻辑执行计划进行优化。 (4)执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。

  4. Hadoop

    使用 HDFS 进行存储,使用 MapReduce 进行计算。

总结

Hive 通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。


Hive 执行流程

Copyright © 尚硅谷大数据 2019 all right reserved,powered by Gitbook
该文件最后修订时间: 2019-03-16 07:15:56

results matching ""

    No results matching ""